对于许多过程的优化控制,重要的是阀门快速地到达一个指定的位置。对于小信号改变(1% 或更小)作出快速的响应是在提供优化过程控制方面的其中一个最重要的因素。在自动的、调节式控制场合,从控制器接受的大量信号改变都是为了取得小的阀门改变。如果一个控制阀组件能够快速地对这些小信号改变作出响应,过程偏差度将会得到改善。阀门响应时间是通过一个称为 T63 的参数来测量的。T63 是从输入信号改变开始起到输出达到 63% 的相应改变时测量所得到的时间。它包括阀门组件的时滞时间(一个静态时间)和阀门组件的动态时间。这个动态时间是对于执行机构从一旦开始移动至达到 63% 的点所需要的时间的一种度量。
对于一个给定的应用场合,如果没有足够的总体推力/摩擦力比例,一个选择就是通过使用下一个较大尺寸的执行机构来增加执行机构的推动力、或增加给执行机构的压力。这个较高的推力/摩擦力比例会减小死区,有助于减少阀门组件的时滞时间。然而,这两个选择都意味着需要较大的压缩空气量供应给执行机构。作为交换的是通过增加动态时间而可能对阀门响应时间产生不利的影响。
减少执行机构气室容积的一个方法是使用活塞执行机构而非弹簧式薄膜执行机构,但这不是灵丹妙药。活塞执行机构通常比弹簧式薄膜执行机构有更大的推力,但是它们也有更高的摩擦力,这可能会导致阀门响应时间问题。为了获得活塞执行机构所需的推力,通常有必要使用比薄膜执行机构更高的气源压力,因为活塞通常有更小的受压面积。这意味着需要供应更大量的空气,随之而产生的是对动态时间的负面影响。另外,活塞执行机构有更多的导向表面。它们由于对准方面的内在困难以及与 O 型圈的摩擦,趋向于有更高的摩擦力。这些摩擦力的问题也趋向于随着时间而增加。不管最初这些 O 型圈是多么好,由于磨损或其它环境条件,这些弹性材料会随时间而降低性能。类似地,导向表面的磨损会增加摩擦力,润滑程度也会降低。这些摩擦力问题会产生更大的活塞执行机构死区。这会通过增加时滞时间而增加阀门的响应时间。
固定增益定位器通常已经在某一特殊供气压力下进行了优化。然而,在较小的供应压力范围内,这个增益可能会成两倍或更多倍地变化。例如,一个在 20 psig的供气压力下进行优化的定位器,能会被发现当供气压力增加到 35 psig 时,它的增益减少了一半。
供气压力也会影响供应给执行机构的空气量,空气量则决定动作速度。它也与耗气量直接相关。高增益滑阀定位器需要消耗 5 倍于在动力放大阶段使用放大器的更加高效的高性能二级定位器所需的气量。
采用高增益的定位器设计可以显著降低死区。它也会对阀门组件的分辨率作出显著的改善。死区和分辨率为 1% 或更小的阀门组件已经不能满足许多过程偏差度降低的需要。许多过程要求阀门组件要低至 0.25% 的死区和分辨率,尤其是阀门组件安装于一个快速过程回路的场合。
这个误解来自于测试阀门动作时间的多年经验。动作时间测试通常是这样进行的:让阀门组件接受一个 100% 阶跃改变的输入信号,然后测量阀门组件在某一方向上完成一次全行程动作所需要的时间。
尽管活塞驱动的阀门通常比大部分弹簧薄膜驱动的阀门有更快的动作时间,但是这种测试并不能反映出阀门在实际的过程控制情况下性能。在正常的过程控制应用场合里,阀门很少需要全行程的动作。通常,阀门只要求在 0.25% 至 2%的阀位变化范围内作出响应。广泛的阀门测试表明弹簧薄膜阀门组件在小信号改变方面的性能总是超过活塞驱动的阀门,而小信号改变更能代表调节式过程控制应用工况。活塞执行机构里较高的摩擦力是使得它们比弹簧薄膜执行机构对于小信号的响应更加慢的一个作用因素。